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Abstract
We study the dynamics of a quantum particle in R

n+m constrained by a strong
potential force to stay within a distance of order h̄ (in suitable units) from a
smooth n-dimensional submanifold M. We prove that in the semiclassical limit
the evolution of the wavefunction is approximated in norm, up to terms of order
h̄1/2, by the evolution of a semiclassical wave packet centred on the trajectory
of the corresponding classical constrained system.

PACS numbers: 03.65.Sq, 03.70.+k, 05.45.Mt

1. Introduction

The aim of this paper is to study the semiclassical limit of a nonrelativistic quantum
Hamiltonian system in the configuration space R

n+m, constrained to a submanifold M ⊂ R
n+m

by a confining potential which becomes infinite, in a suitable sense to be defined, when we
move away from M.

We derive an effective Hamiltonian for the classical motion on M, using the technique
developed in a series of papers by Hagedorn (Hagedorn 1994, 1998 and references therein)
to construct approximate solutions to the Schrödinger equation which are localized along a
classical trajectory.

We limit ourselves to Hamiltonians of the form

Ĥ ε = |p̂|2
2

+ V (q̂) + Wε(q̂) p̂ := −ih̄∇q q̂ := q (1.1)

where Wε is the confining potential and ε is a small parameter which we will make eventually
go to zero (in section 3 we examine the motion of a particle in a magnetic field, which, under
suitable conditions, can be put in the form (1.1)).

To explain the characteristic features of the method we employ, we first analyse in detail
a number of explicit cases (Rn embedded into R

n+m, a smooth curve embedded into a plane);
we show then how the procedure generalizes to (non-flat) submanifolds of arbitrary dimension
and codimension.
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The confining potential approach to imposing a constraint has been used often in the
literature for a variety of reasons.

In classical mechanics, it has been employed mostly to ‘realize holonomic constraints’
(Froese and Herbst 2001), i.e. to justify the use of the D’Alembert principle in deriving the
Lagrange function for systems subject to holonomic time-independent constraints (which was
the starting point for the research performed in Takens (1980)). Other traditional applications
include the analysis of magnetic traps and mirrors, whose first complete mathematical
discussion was given in Rubin and Ungar (1957), which was also the first rigourous
investigation in the field (a detailed treatment of these problems from the point of view of weak
convergence, with extensions to arbitrary Riemannian manifolds and molecular dynamics, can
be found in Bornemann (1998)).

In quantum mechanics, the limit of large restoring force has been considered essentially
for two reasons.

The first is that it offers a way, different from the intrinsic one (Henneaux and
Teitelboim (1992) and references therein), to quantize constrained systems (da Costa 1981,
1982, Jensen and Koppe 1971, Kaplan et al 1997, Maraner and Destri 1993, Mitchell 2001,
Schuster and Jaffe 2003).

The second is that in mesoscopic physics (i.e. the branch of physics which studies
small objects, such as thin films and quantum wires) there exist systems which have one
or more dimensions much smaller than the others, and are then well described, in a zero-
order approximation, by an (n − k)-dimensional confined system, 1 � k � n − 1 (for the
physical background and mathematical models see Duclos and Exner (1995), Exner (2003)
and references therein).

It was only recently (Froese and Herbst 2001, Teufel 2003) that a comparison between
the classical and the quantum case was attempted.

The main problem one runs into is that, due to the Heisenberg principle, the mean value
of the Hamiltonian operator diverges for every initial condition in the constraining limit (the
better we localize the wavefunction on the submanifold M, the bigger the mean of the square
of the momentum becomes), while almost all theorems available in classical mechanics deal
with finite energies.

To overcome these difficulties, Froese and Herbst state and prove a theorem on the
classical case with unbounded energy, which, however, does not seem very natural from a
physical point of view, while in Teufel (2003) it is suggested to consider, instead of the limit
of large restoring forces, the limit of weak forces in the non-constraining directions (they are
equivalent in classical mechanics, up to a rescaling of spacetime).

We propose a different approach, based on the fact that in quantum mechanics there exists
an a priori length scale defined through h̄ (in units in which time and mass are of order 1).

In real systems, like the mesoscopic ones mentioned above, the transversal directions
contain at least some atoms, so any realistic layer cannot become smaller than h̄, which is the
order of magnitude of atomic dimensions. Therefore, in our opinion, it is necessary to link the
squeezing scale, determined by the constraining potential, to the quantum scale given by h̄.

1.1. A simple example

To illustrate this point, we consider the standard two-dimensional example

Ĥ ε = p̂2
x + p̂2

y

2
+

1

2ε2
ω(x)2y2 (1.2)

where ω : R → R+ is an arbitrary smooth function which satisfies ω(x) � ω∗ > 0 ∀x ∈ R.
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The squeezing scale is determined by ε, and we want it to be a function of h̄, ε = ε(h̄).
Since, as we argued before, ε cannot become smaller than h̄, and it has to go to zero when
h̄ → 0 (to achieve the constraining limit), the simplest choice is

ε = ah̄α 0 < α � 1 a fixed > 0 (1.3)

(there is no loss of generality, since what matters is the behaviour of ε(h̄) when h̄ → 0).
With this choice, the Hamiltonian (1.2) becomes

Ĥ h̄ = p̂2
x + p̂2

y

2
+

1

2a2h̄2α
ω(x)2y2

and we want to examine the limiting behaviour of the dynamics generated by Ĥ h̄, when h̄ → 0.
If we unitarily scale the transversal direction to factorize h̄

y → h̄(α+1)/2y ∂y → h̄−(α+1)/2∂y

we get

Ĥ h̄ → −h̄2

2
∂2
x + h̄1−α

[
−∂2

y +
1

2a2
ω(x)2y2

]
.

If α �= 1, using the same techniques illustrated in the next sections, it can be shown that
the influence of the normal motion on the longitudinal one is suppressed, and the effective
Hamiltonian is the free one. Therefore, in the following, we consider only the more interesting
case α = 1.

1.2. Outline of the paper and summary of results

In the next section we analyse a generalization of (1.2), studying the case of a potential
confining to a flat submanifold M of R

n+m. We realize the constraining limit through dilations
in the direction normal to M, i.e. we put Wε(x, y) = W(x, y/ε). This allows us to consider
generic dependence on the transversal variables, unlike what is usually done in the literature
(Bornemann 1998, Froese and Herbst 2001, Takens 1980), where the first nonzero term in
the Taylor expansion of the potential around the constraint is the quadratic one, and so the
problem is reduced to the analysis of harmonic motions.

In section 3 we consider a two-dimensional example where the constraining limit
is realized through the more traditional method of scaling of the coupling constant, i.e.
Wε(x, y) = ε−2W(x, y). In the case of a spectrally smooth potential confining to a
nondegenerate critical curve (for the definitions, see appendices A and B) the semiclassical
limit motion we get along M is the same as the homogenized classical motion found by
Bornemann (1998).

In section 4, we show that an analogous result holds for an n-dimensional nondegenerate
critical submanifold embedded into R

n+m. We exploit Hagedorn’s multiple scale technique to
construct squeezed states whose centre and dispersion take account of the (non-trivial) curved
background.

Finally, we address a Hamiltonian showing the phenomenon of Takens chaos (Bornemann
1998, Takens 1980), which is encountered when the constraining potential is not spectrally
smooth. In classical mechanics, the motion on the submanifold M is no longer deterministic,
i.e. it is not described by a natural mechanical system on M and the limit set obtained forms a
funnel. We show that the semiclassical limit offers a natural way to reduce (but however not
to eliminate, in general) the degeneracy, linking different trajectories in the funnel to different
quantum initial conditions.
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2. Constraints by normal dilations

Let M = R
n and Wε(q) = W(x, y/ε), where we split q ∈ R

n+m as (x, y), x ∈ R
n, y ∈ R

m.
We suppose that

V,W ∈ L2
loc and are bounded from below (2.1a)

lim
|y|→∞

W(x, y) = ∞ ∀ x ∈ R
m (confining hypothesis). (2.1b)

We also impose an implicit smoothness hypothesis on the potentials, through a condition
on the resolvent of the reduced Hamiltonian ĥ(x), to be defined below.

As argued above, we put ε = ah̄. Actually, since we have several normal directions, we
can choose different ε/h̄ ratios for each one.

Defining

ya :=
(

y1

a1
· · · ym

am

)
(2.2)

equation (3.1) becomes

Ĥ h̄ = |p̂|2
2

+ V (x) + W(x, ya/h̄) (2.3)

where, for the sake of simplicity, we suppose that V (q) does not depend on y.
Scaling the transversal directions by the dilation operator

(Dγ ψ)(x, y) = γ m/2ψ(x, γy) (2.4)

we get a Hamiltonian of the same form as the Born–Oppenheimer operator, used in molecular
physics,

D
†
h̄−1Ĥ h̄Dh̄−1 =: Ĥ BO = −h̄2

2
�x + ĥ(x) ĥ(x) = −1

2
�y + W(x, ya) + V (x). (2.5)

It follows from (2.1a), (2.1b) that ĥ(x) is, for each x, a well-defined self-adjoint operator,
with compact resolvent and nondegenerate ground states (Reed and Simon 1978).

We suppose in addition that ĥ(x) has a smooth dependence on x, namely that (̂h(x)− i)−1

is a Cl function of x, for some l � 2. This makes its eigenvalues E(x) (which we will also call
‘transversal’ or ‘normal’ energy levels) Cl functions of x away from crossings or absorption
in the continuous spectrum.

The behaviour of the Born–Oppenheimer Hamiltonian when h̄ → 0 is well understood
(Hagedorn 1994, Teufel 2003).

The transversal motion adiabatically decouples from the longitudinal one and stays
approximately in a bound state of ĥ(x) for a fixed value of x. On the other hand, the
longitudinal motion depends on the transversal one because it feels an effective potential
which is equal to the normal energy.

Using standard results (Hagedorn 1994) we can elaborate on this qualitative argument:

Theorem 2.1. Suppose that there exists an open set U ⊂ R
n such that ĥ(x) has

a nondegenerate eigenvalue E(x) for x ∈ U , with corresponding real normalized Cl

eigenfunction �(x).
Let a(t) and η(t) be the solutions of the classical equations of motion with potential E(x)

(which exist and are unique since E(x) is Cl(U) and bounded from below)

ȧ(t) = η(t) (2.6)
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η̇(t) = −∇E(a(t)) (2.7)

a(0) = a0 η(0) = η0 (2.8)

then, for t ∈ [0, T ],����� exp

(
− it

h̄
Ĥ h̄

)
ϕk(A(0), B(0), h̄, a(0), η(0), x)F (x)Dh̄−1�(x)

− exp

(
i
S(t)

h̄

)
ϕk(A(t), B(t), h̄, a(t), η(t), x)F (x)Dh̄−1�(x)

�����
L2(Rn+m)

= O(h̄1/2) (2.9)

where S(t) is the classical action, A(t) and B(t) are linked to the dispersions of ϕk in
(respectively) position and momentum and F is a cut function which is zero outside a
neighbourhood of the classical trajectory {a(t) : t ∈ [0, T ]}.
Remark 2.1. The functions ϕk(A,B, h̄, a, η, x) were introduced by Hagedorn, to whom we
refer for the notation (Hagedorn 1998). They are a useful tool in studying the semiclassical
limit of quantum mechanics and they coincide with the ‘squeezed states’ widely used in
quantum optics (Combescure 1992). Essentially, they are minimal uncertainty wave packets
with different spreads in position and momentum.

Remark 2.2. We will give a proof of a slightly more general version of theorem 2.1 in sections 3
and 4, where we analyse the Laplace–Beltrami operator in a curved space.

2.1. Comments and examples

Let us analyse in greater detail the approximate evolution found in (2.9).
The transversal wavefunction Dh̄−1�(x) clearly describes a motion confined to the

submanifold M = R
n, since

〈ŷ〉 = 〈Dh̄−1�(x), yDh̄−1�(x)〉 = h̄〈�(x), y�(x)〉 = O(h̄)

(�ŷi)
2 = 〈

Dh̄−1�(x), y2
i Dh̄−1�(x)

〉 − 〈Dh̄−1�(x), yiDh̄−1�(x)〉2 = O(h̄2)
(2.10)

while both 〈p̂y〉 and 〈�p̂y〉 are O(1).
One should note, however, that we did not require W to have a strict minimum on M.

Actually this is not needed, since in our scale the average position of the normal motion is
always ‘seen’ to be approximately zero, as equation (2.10) shows.

In the standard case where

W(x, y) = 1

2

m∑
i=1

ωi(x)2y2
i (2.11)

the effective potential for the motion on M will be

En(x) =
m∑

i=1

(ni + 1/2)

ai

ωi(x) + V (x) =
m∑

i=1

ϑiωi(x) + V (x)

n := (n1, . . . , nm) ϑi := (ni + 1/2)

ai

.

(2.12)

This is exactly the homogenized potential found by Bornemann (1998) and Takens (1980),
where the ϑi are, in the classical case, the adiabatic invariants associated with the normal
oscillations (i.e. the energy–frequency ratios).
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Varying the squeezing factors ai , or the transversal wavefunction �(x), ϑi can be made
to assume every positive value (the value ϑi = 0 can be obtained suppressing the ith mode as
we explained in section 1.1). The harmonic potential is particular in this respect, because, as
far as the effective potential is concerned, all normal states are equivalent, since the various
choices for �(x) correspond simply to suitable scalings of ε and h̄.

One could even use an x-dependent scale, ε = a(x)h̄, without altering substantially the
structure of equation (2.12).

Such a simple picture cannot be expected when W is not harmonic.
In general, the effective potential will have a non-trivial dependence on both the parameters

a := (a1, . . . , am) and the transversal wavefunction. This gives a host of well-defined classical
motions on M, whose form, however, cannot be given explicitly as in the harmonic case.

It would be interesting, for instance, to compare the semiclassical effective Hamiltonians
produced by a ‘flat’ confining potential, like the sextic harmonic oscillator,

W(x, y) = V4(x)y4 + V6(x)y6 (x, y) ∈ R
2 V6(x) � V∗ > 0 (2.13)

with the corresponding homogenized classical motions (if any exist), to see if it is possible to
reproduce them in a purely classical way.

Unfortunately, the spectrum of the reduced Hamiltonian associated with (2.13) is
known only for particular values of the squeezing parameter a. For example, if a = 1 and
V4(x)2 = 12V6(x)3/2 it is known (Skála et al 1996, Ushveridze 1994) that the ground state is

E0(x) = V4(x)

2V6(x)1/2
(2.14)

but it is not possible to write an explicit expression for all values of a.

3. Constraints by scaling of coupling constant: a curve in a plane

In this section we analyse, in a fairly detailed way, a two-dimensional example where
Wε = ε−2W . It allows us to explain the main differences between the curved and the
flat case, avoiding technical complications arising from higher codimensions, which are not
essential for the result, and will be illustrated in the next section.

We suppose, in the same spirit as (2.1a), that V and W are C∞ and non-negative, but, as
is customary in classical mechanics (Bornemann 1998, Takens 1980), we replace (2.1b) with
the hypothesis that W is a spectrally smooth potential constraining to a nondegenerate critical
curve M (appendices A and B).

Our starting Hamiltonian (with the prescription ε = ah̄) will then be

Ĥ h̄ = p̂2
x + p̂2

y

2
+ V (x, y) + (ah̄)−2W(x, y). (3.1)

Squeezed states are particularly suited to studying this sort of situation, where M is not
flat, because, as (2.9) shows, the evolution of a localized state is approximately described (for
a bounded time interval) by localized states. This allows us to analyse the motion using one
coordinate chart only and therefore local expressions for the operators involved.

Essentially, what we will do here is to adapt the arguments of the last section to a curved
case, constructing an approximate solution to the Schrödinger equation which, in suitable
coordinates, is still given by a squeezed state in the longitudinal direction and an (harmonic)
oscillation in the transversal one.
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3.1. The Hamiltonian in curvilinear coordinates

We fix a tubular neighbourhood V of M, and consider a single chart of tubular coordinates,
defined on U ⊂ V .

This simply means that, given a local parametric representation of M in terms of its arc
length s, qM(s) = (xM(s), yM(s)), we can write (for q ∈ U )

q(s, u) = qM(s) + un(s) (3.2)

where n(s) is the unit normal of M.
In writing (3.2) we used the natural linear structure of tubular coordinates. A more

invariant, but less manageable, relation would be

q = expqM
q⊥ qM ∈ M q⊥ ∈ TqM

M⊥

where exp is the geodesic exponential map (Lang 1995). In the following, however, we will
stick to (3.2).

When q varies over U , s and u vary, respectively, over two intervals I and J .

Lemma 3.1. The Hilbert space L2(U , dq) is isometric to L2(I × J, ds du).

Proof. This well-known lemma results from two facts.
First, the choice of curvilinear coordinates provides an isometry of L2(U , dq) to

L2(I × J, g1/2 ds du), where

g1/2 = 1 − k(s)u (3.3)

is the Jacobian of the transformation (x, y) → (s, u), and k(s) is the curvature of M.
Second, the multiplication by g1/4 is a unitary operator from L2(I × J, g1/2 ds du) to

L2(I × J, ds du). �

In the following, we will denote the isometry constructed above by Û : L2(U , dq) →
L2(I × J, ds du).

We remark that Û maps C∞
0 (U ) onto C∞

0 (I × J ) and Ĥ h̄ maps C∞
0 (U ) onto C∞

0 (U ),
so, denoting, with abuse of notation, the restrictions of Û and Ĥ h̄ to C∞

0 functions with the
same symbols, we have

ÛĤ h̄Û
† : C∞

0 (I × J ) → C∞
0 (I × J )

ÛĤ h̄Û
† = −h̄2

2

1

(1 − k(s)u)1/2
∂s

(
1

1 − k(s)u
∂s

·
(1 − k(s)u)1/2

)
− h̄2

2
∂2
u − h̄2

8

k(s)2

(1 − k(s)u)2
+ Ṽ (s, u) + (ah̄)−2W̃ (s, u) (3.4)

= − h̄2

2(1 − k(s)u)2
∂2
s − h̄2k̇(s)u

(1 − k(s)u)3
∂s − h̄2Q(s, u) (3.5)

− h̄2

2
∂2
u + Ṽ (s, u) + (ah̄)−2W̃ (s, u) (3.6)

where Ṽ and W̃ are V and W written in curvilinear coordinates and h̄2Q is an extra potential of
purely quantum origin which depends on the curvature k(s) (da Costa 1981, Jensen and Koppe
1971). It also appears in mesoscopic physics, and can give rise to interesting phenomena, like
bound states, in a quantum waveguide (Duclos and Exner 1995). However, it will not concern
us, since it disappears in the lowest order of semiclassical approximation.
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Using again a dilation operator in the transversal direction u,

Dγ : L2(I × Jγ , ds du) → L2(I × J, ds du)

(Dγ ψ)(s, u) = γ 1/2ψ(s, γ u) (3.7)

Jγ := {γ u : u ∈ J }
we get the final form of the Hamiltonian which we will employ in the estimates:

Ĥ BO : C∞
0 (I × Jh̄−1) → C∞

0 (I × Jh̄−1)

Ĥ BO := D
†
h̄−1ÛĤ h̄Û

†Dh̄−1

= − h̄2

2(1 − h̄k(s)u)2
∂2
s − h̄3k̇(s)u

(1 − h̄k(s)u)3
∂s − h̄2Q(s, h̄u) + ĥ(s) (3.8)

where

ĥ(s) = − 1
2∂2

u + Ṽ (s, h̄u) + (ah̄)−2W̃ (s, h̄u). (3.9)

Remark 3.1. Note that

(ah̄)−2W̃ (s, h̄u) = 1

2a2
∂2
uW̃ (s, 0)u2 +

h̄

6a2
∂3
uW̃ (s, 0)u3 +

1

6a2h̄2

∫ h̄u

0
dv(h̄u − v)3∂4

uW̃ (s, v)

= 1

2a2
ω(s)2u2 +

h̄

6a2
∂3
uW̃ (s, 0)u3 + R3(h̄, u) (3.10)

Ṽ (s, h̄u) = Ṽ (s, 0) + h̄u∂uṼ (s, 0) +
∫ h̄u

0
dv(h̄u − v)∂2

uṼ (s, v)

= Ṽ (s, 0) + h̄u∂uṼ (s, 0) + R1(h̄, u). (3.11)

The scaling in the normal direction eliminates the dependence of ĥ on h̄ only at the lowest
order in the Taylor expansion around the constraint (which is the quadratic one since M is a
nondegenerate critical curve).

From now on, we will denote by ĥ(2)(s) the harmonic part of ĥ(s):

ĥ(2)(s) := −1

2
∂2
u +

1

2a2
ω(s)2u2 + Ṽ (s, 0). (3.12)

3.2. The approximate evolution

In this subsection we prove

Theorem 3.1. Let �(s, u) be a real normalized eigenstate of ĥ(2)(s), considered as an
operator on L2(R, du), with eigenvalue E(s). Let a(t) and η(t) be the solutions of the
classical equations of motion with potential E(s), and let F(s, v) be a function in C∞

0 (I × J )

which is equal to 1 for s in a neighbourhood of the trajectory {a(t) : t ∈ [0, T ]} and v near 0.
Then����exp

(
− it

h̄
Ĥ h̄

)
Û †Dh̄−1ϕk(A(0), B(0), h̄, a(0), η(0), s)F (s, h̄u)�(s, u)

− exp

(
iS(t)

h̄

)
Û †Dh̄−1ϕk(A(t), B(t), h̄, a(t), η(t), s)F (s, h̄u)�(s, u)

����
= O(h̄1/2) (3.13)

where S(t) is the classical action associated with (a(t), η(t)).

Remark 3.2. The function ϕk(A(t), B(t), h̄, a(t), η(t), s)F (s, h̄u)�(s, u) is in C∞
0 (I ×Jh̄−1),

so Û †Dh̄−1ϕk(A(t), B(t), h̄, a(t), η(t), s)F (s, h̄u)�(s, u) belongs to C∞
0 (U ).
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The proof will closely follow the pattern developed by Hagedorn (1994), but the remainder
we get is different from that found by him, since ĥ contains terms of order h̄ and the kinetic
part of (3.8) is not simply −(h̄2/2)∂2

s .
The basic tool we use is a simple application of the fundamental theorem of calculus (also

known as the Duhamel formula). We give it without proof.

Lemma 3.2. Suppose Ĥ h̄ is a family of self-adjoint operators for h̄ > 0. Suppose ψ(h̄, t)

belongs to the domain of Ĥ h̄, is continuously differentiable in t and approximately solves the
Schrödinger equation in the sense that

ih̄∂tψ(h̄, t) = Ĥ h̄ψ(h̄, t) + ζ(h̄, t) (3.14)

where ζ(h̄, t) satisfies

‖ζ(h̄, t)‖ � µ(h̄, t) (3.15)

for 0 � t � T . Suppose (h̄, t) is the exact solution to the equation

ih̄∂t(h̄, t) = Ĥ h̄(h̄, t) (3.16)

with the initial condition (h̄, 0) = ψ(h̄, 0).
Then, for 0 � t � T , we have

‖(h̄, t) − ψ(h̄, t)‖ � h̄−1
∫ T

0
dτ µ(h̄, τ ). (3.17)

Suppose now that ψap(s, u, t) ∈ C∞
0 (I × Jh̄−1) is an approximate solution to the

Schrödinger equation associated with the local Hamiltonian (3.8),

ih̄∂tψap = Ĥ BOψap + ζ(h̄, t) (3.18)

with

‖ζ(h̄, t)‖L2(I×Jh̄−1 ) = O(h̄3/2) for 0 � t � T . (3.19)

This implies that

ih̄∂t Û
†Dh̄−1ψap = Ĥ h̄Û

†Dh̄−1ψap + ζ̃ (h̄, t)

with ‖ζ̃ (h̄, t)‖L2(U ) = O(h̄3/2).
Using lemma 3.2 we finally get����exp

(
− it

h̄
Ĥ h̄

)
Û †Dh̄−1ψap(t = 0) − Û †Dh̄−1ψap(t)

����
L2(R2)

= O(h̄1/2).

Therefore, to prove theorem 3.1 we will construct an approximate solution to (3.18), of
the form

ψap(s, u, t) = ψ0(s, u, t) + h̄ψ⊥
2 (s, u, t) (3.20)

with ψ0(s, u, t) = exp(iS(t)/h̄)ϕk(A(t), B(t), h̄, a(t), η(t), s)F (s, h̄u)�(s, u) (the notation
ψ⊥

2 means that the transversal part of this term is orthogonal to �).
An educated guess about the form of the remainder ψ⊥

2 can be made employing a multiple
scale technique, which allows us to split the adiabatic and the semiclassical scale.

We will elaborate on this procedure in the more complicated case of the next section, so
here we limit ourselves to verifying that the right choice is

ψ⊥
2 (s, u, t) = ϕk(A(t), B(t), h̄, a(t), η(t), s)F (s, h̄u)r̂(s)

[
iη(t)∂s�(s, u)

− η(t)2k(s)u�(s, u) − ∂uṼ (s, 0)u�(s, u) − 1

6a2
∂3
uW̃ (s, 0)u3�(s, u)

]
(3.21)
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where r̂(s) is the bounded inverse of the restriction of [̂h(2)(s) − E(s)] to the orthogonal
complement of �(s, u) in L2(R, du).

Estimate (3.19) will follow if we note the following facts:

(i) The terms containing derivatives of F are O(h̄∞). For instance,∫
I×Jh̄−1

ds du|∂uF (s, h̄u)ϕk(s)∂u�(s, u)|2

=
∫

I×J

ds dv|∂vF (s, v)ϕk(s)h̄
1/2∂u�(s, vh̄−1)|2 < exp(−Ch̄−1) (3.22)

since ∂vF has support away from zero in v, and ∂u�(s, vh̄−1) is a polynomial times a
Gaussian, in u = vh̄−1.

The derivatives with respect to s can be estimated in the same way, since ϕk is a Gaussian
in [s − a(t)]/h̄1/2.

(ii) The term

h̄3k̇(s)u

(1 − h̄k(s)u)3
∂sψap

is O(h̄2) since ∂sϕk is O(h̄−1).
(iii) The term

h̄2Q(s, h̄u)ψap

is O(h̄2) since Q(s, u) is bounded on the support of F.
(iv) The last term is

ĥ(s)ψap = ĥ(2)ψap +
h̄

6a2
∂3
uW̃ (s, 0)u3ψ0 + h̄u∂uṼ (s, 0)ψ0 + R3(h̄, u)ψap

+ R1(h̄u)ψap + O(h̄2)

= E(s)ψap + ih̄ϕk(s)F (s, h̄u)η(t)∂s�(s, u) + h̄η(t)2k(s)uψ0 + O(h̄2)

since R3(h̄, u) and R1(h̄, u) are O(h̄2) on the support of F.
(v) The terms left combine themselves with the kinetic part and the time derivative of ψap to

give (3.19).

Remark 3.3. The effective motion on M is given by the potential

En(s) = (n + 1/2)

a
ω(s) + Ṽ (s, 0) = ϑω(s) + Ṽ (s, 0) (3.23)

and is equal, also in this case, to the homogenized classical motion.

The hypotheses that M is a nondegenerate critical curve and W is spectrally smooth imply
that the normal oscillation is harmonic, and so all transversal states are equivalent.

3.3. The magnetic trap

Using theorem 3.1 we can analyse the dynamics of a nonrelativistic particle in a strong
magnetic field (magnetic trap).

We suppose that the field is ‘strongly axially symmetric’, i.e. that the vector potential is
given, in cylindrical coordinates, by

A(r, z) = A (r, z)θ. (3.24)
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The Hamiltonian is

Ĥ = 1

2m

(
p̂ − e

c
A

)2
. (3.25)

Since div A = 0, in the subspace with zero angular momentum in the z direction (3.25)
becomes

Ĥ 0 = − h̄2

2m

1

r
∂r(r∂r) − h̄2

2m
∂2
z +

e2

2mc2
A (r, z)2

or, scaling the wavefunction by the isometry

V̂ : L2(R+ × R, r dr dz) → L2(R+ × R, dr dz) V̂ ψ = r1/2ψ (3.26)

V̂ Ĥ 0V̂ † = − h̄2

2m
∂2
r − h̄2

8mr2
− h̄2

2m
∂2
z +

e2

2mc2
A (r, z)2. (3.27)

If we put m = 1 and consider the case of large electric charge, c/e = ah̄, we get in the
end

Ĥ h̄ := −h̄2

2
∂2
r − h̄2

2
∂2
z − h̄2

8r2
+

1

2a2h̄2 A (r, z)2 (3.28)

which, except for the centrifugal term, is of the form (3.1), with W(r, z) = A (r, z)2/2.
Theorem 3.1 tells us that, if we consider an initial state localized away from the origin,

the semiclassical motion is constrained along the curve A (r, z) = 0, with effective potential
given by

E(s) = ϑ
{
∂2
u[ ˜A (s, u)]2

/
2
}1/2

|u=0
= ϑ |∂u

˜A (s, 0)| = ϑ |B(s, 0)| (3.29)

where B is the magnetic field strength.

4. Constraints by scaling of coupling constant: general case

When the submanifold M has dimension (and codimension) greater than 1, the theory
developed in foregoing sections has to be generalized essentially in two aspects.

First, if dim M > 1, the metric GM , induced by the Euclidean metric of R
n+m on M, may

not be trivial, so both the classical motion of the centre of the squeezed state and the evolution
of the dispersion matrices A and B have to be modified to take this into account. Thinking
about the results we got above, it is not difficult to derive the new classical equations; we will
simply obtain a motion on a Riemannian manifold with metric GM(x) in the presence of a
potential E(x) which is an eigenvalue of the reduced Hamiltonian. In local coordinates this
means (see, for instance, Abraham and Marsden 1978)

ȧ(t) = η(t) (4.1)

η̇(t) = −�(a(t))(η, η) − G−1
M (a(t))∇xE(a(t)) (4.2)

where �(η, η)i = �i
jkη

jηk (�i
jk are the Christoffel symbols associated with GM ) and ∇x

denotes the column vector whose coordinates are ∂i := ∂xi
.

The equations for the dispersion matrices are a bit more complicated, but, as we will see
below, they can be derived, using the Hagedorn multiple scale method, from the term of order
h̄ of the formal expansion of the solution of the Schrödinger equation in powers of h̄1/2.

The second point is that, if codim M > 1, the Euclidean metric written in tubular
coordinates is no longer diagonal.

In a formal expansion of the Hamiltonian Ĥ ε around the constraint, the off-diagonal
terms give rise, as first noted by Maraner and Destri (1993; see also Froese and Herbst (2001),
Mitchell (2001), Schuster and Jaffe (2003) and references therein) to an induced gauge field
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which minimally couples the longitudinal and the transversal motion. This gauge field is
linked to the normal connection for the embedding M ⊂ R

n+m (see, for instance, Spivak 1979)
and it certainly vanishes if codim M = 1.

At first sight, it might seem that in this case we can no longer split the motion into a
tangential and a normal part, even in the semiclassical limit.

Actually this is not true, since, applied to a squeezed state, the gauge coupling is of
order h̄, and, due to the antisymmetric character of the normal fundamental form, it maps an
eigenstate of the reduced Hamiltonian into a state which is orthogonal to it.

According to the proof of theorem 3.1, this means that, if we start from an initial state
which is concentrated along a classical trajectory, and we study its evolution when h̄ goes
to zero, the gauge term contributes only to the remainder and not to the leading term of the
expansion in powers of h̄1/2, which is again given by a wave packet in the longitudinal variables
times an eigenstate of the normal Hamiltonian.

In principle, higher order corrections can be calculated following the procedure developed
by Hagedorn (1994), even though in the general case the formulae can be cumbersome.

In the following we will give some details of the calculations that justify these claims,
even though, given the previous warnings, they are analogous to those of the two-dimensional
case.

4.1. The Hamiltonian in tubular coordinates

By the tubular neighbourhood theorem (Lang 1995), given a local chart ζ−1 : E ⊂ M → R
n

for the submanifold M, and a δ small enough, there exists a diffeomorphism between

E (δ) := {q ∈ R
n+m : d(q,E) < δ} d(q,E) := inf{|q − e| : e ∈ E} (4.3)

and the open subset of the normal bundle of M given by

T E⊥
δ := {(e, n) : e ∈ E, n ∈ TeE

⊥, |n| < δ}. (4.4)

The diffeomorphism can be chosen to be

f (e, n) = e + n

where we have identified every fibre TeE
⊥ with a subspace of R

n+m.
This means that, given a (local) basis for the normal bundle {nk(e)}mk=1, we can write

every point in E (δ) as

q = ζ(x) + yknk(ζ(x)) x ∈ R
n y ∈ R

m (4.5)

(summation over repeated indices is understood).
Starting from the above expression, we can calculate the coordinate form of the basis for

the tangent space in a point of E (δ) simply differentiating with respect to a coordinate xi or yk ,
and then calculate the scalar product of two basis elements to get the local form of the metric.

The result is

G(x, y) =
(

I N

0 I

)(
GM(I − S)2 0

0 I

)(
I N

0 I

)T

(4.6)

where

Ni,h(x, y) = ykβ
kh
i (x) βkh

i = nk · ∂inh (4.7)

Si,j (x, y) = yk

(
G−1

M

)
il
αk

lj (x) αk
lj (x) = nk · ∂ltj (4.8)

and tl denotes the basis for the tangent space (the indices k and h always refer to the normal
coordinates, while the other indices refer to the tangential coordinates).
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βkh
i and αk

il are called, respectively, the normal fundamental form and second fundamental
form of the submanifold M. Together with the metric GM , they characterize completely the
embedding of M into R

n+m, up to a Euclidean motion (Spivak 1979). It is important to stress
that βhk

i = −βkh
i , so, when codim M = 1, β is identically zero.

Using (4.6), we can write the Hamiltonian in tubular coordinates, but, as we did in the two-
dimensional case, we have to modify the volume form given by g(x, y)1/2 := [det G(x, y)]1/2,
in order to get wavefunctions which have the right normalization when integrated over the
submanifold M.

After this, we have to dilate the normal coordinates by h̄, in order to separate the reduced
Hamiltonian from the longitudinal part.

This can be achieved by the unitary operator

(V̂ ψ)(x, y) =
(

gM(x)

g(x, y)

)1/4

h̄−m/2ψ(x, y/h̄)

V̂ : L2(E (δ/h̄), gM(x)1/2 dx dy) → L2(E (δ), g(x, y)1/2 dx dy)

(4.9)

where gM(x) := det GM(x).
The result in the end is

Ĥ BO = V̂ †Ĥ h̄V̂ = −h̄2

2
ρh̄(x, y)−1/4g

−1/2
M

(∇T
x − ∇T

y NT (x, y), h̄−1∇T
y

)
g

1/2
M ρ

1/2
h̄

×
(

[I − h̄S(x, y)]−2G−1
M (x) 0

0 I

)(
∇x − N(x, y)∇y

h̄−1∇y

)
ρ

−1/4
h̄

+ V (x + h̄y) + (ah̄)−2W(x + h̄y) (4.10)

where

ρh̄(x, y) = g(x, h̄y)

gM(x)
. (4.11)

When we further expand equation (4.10), the terms containing ρh̄(x, y) give rise to additive
corrections which depend only on the second derivatives (or the square of the first derivatives)
of ln ρh̄. They are of order at least h̄2. This can be understood if we note that S(x, y) is linear
in y, the second derivatives with respect to x are multiplied by h̄2 and

ln ρh̄(x, y) = ln
det{GM [I − h̄S(x, y)]2}

det GM

= 2 ln det(I − h̄S(x, y)) = 2 Tr ln(I − h̄S)

= −2h̄ Tr(S) − h̄2 Tr(S2) + O(h̄3). (4.12)

Therefore, in the following, we will put ρh̄ = 1 without other comments.
Expanding the potentials V and W , we obtain the reduced Hamiltonian

ĥ(2)(x) = −1

2
�y +

1

2a2
yT H(x)y + V (x) (4.13)

where H(x) is the matrix of the Hessian operator in the basis {nk(ζ(x))}. The hypothesis that
W has a smooth spectral decomposition implies that we can choose the nk to be eigenvectors
of H, so we can write yT H(x)y = ∑

λ,kλ
ω2

λ(x)y2
λ,kλ

.
We will see in the next subsection that, as before, the higher order terms in the Taylor

expansion must be included in the remainder.

4.2. The approximate evolution

To construct approximate solutions to the Schrödinger equation

i h̄∂tψ = Ĥ BOψ (4.14)
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we use the same procedure outlined in previous sections, which is based on the multiple scale
expansion developed by Hagedorn (1994). The operator (4.10) is not of the standard form
studied in the literature, so we briefly explain the modifications needed to cope with this
case.

When all the terms have been spelled out, (4.10) has the form of an elliptic differential
operator in x and y, with coefficients which depend on x and y as well as h̄, plus the reduced
Hamiltonian, plus a remainder of order h̄, which comes from the Taylor expansion of V (x + h̄y)

and W(x + h̄y) up to first and third order, respectively.
According to the Hagedorn method, to split the adiabatic and the semiclassical effects,

we have to introduce a fictitious new variable

ξ := x − a(t)

h̄1/2 (4.15)

which measures the ‘deviation’ of the quantum evolution from the classical one, and consider
ξ as an independent variable in the formal manipulations.

Associated with ξ , there is an auxiliary wavefunction, ψ̃(x, y, ξ ; t), which satisfies the
equation obtained substituting

ψ̃

(
x, y,

x − a(t)

h̄1/2 ; t

)
into (4.14), and adding to the right-hand side the term E(a(t) + h̄1/2ξ)−E(x), which formally
equals zero when ξ = [x − a(t)]/h̄1/2, where E(x) is a fixed eigenvalue of ĥ(2)(x), with
multiplicity 1.

When we perform this substitution, we replace the x dependence in the coefficients of the
differential terms with a dependence on a(t) + h̄1/2ξ .

This is justified because when we apply a function of x, f (x), to a squeezed state
ϕk(A,B, a, η, h̄, x), we can develop f (x) in the Taylor series, up to order l, around the
centre of the packet, getting a remainder which, in norm, is of order h̄l/2+1 (Hagedorn 1994
and references therein).

At this point, we make the ansatz that

ψ̃(x, y, ξ ; t) = exp(iS(t)/h̄) exp

[
iη(t)T GM(a(t))ξ

h̄1/2

]
F(x, h̄y)

× gM(a(t))−1/4(ψ̃0 + h̄1/2ψ̃1 + h̄ψ̃2 + · · ·) (4.16)

where a(t) and η(t) satisfy equation (4.1), S(t) is the associated action

S(t) =
∫ t

0
ds

1

2
η(s)T GM(a(s))η(s) − E(a(s)) (4.17)

and F is a smooth function which has support in x near the classical trajectory, and in h̄y

near 0.
Substituting this ansatz in the equation for ψ̃ , and keeping terms up to order h̄, we can

determine ψ̃0 and ψ̃⊥
2 , which, as shown in Hagedorn (1994), are what is needed to solve

the Schrödinger equation to lowest order in h̄1/2. The calculations are lengthy and not very
interesting, so we simply give the result.

The approximate solution, up to order h̄1/2, of (4.14) is

ψap(x, y; t) = exp(iS(t)/h̄) exp

[
iη(t)T GM(a(t))ξ

h̄1/2

]
gM(a(t))−1/4h̄−n/4F(x, h̄y)

×ϕk(A(t), B(t), 1, 0, 0, ξ)

�(x, y) + r̂(x)

iηT ∇x�
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+ iη(t)T N(a(t), y)∇y� + η(t)T GM(a(t))S(a(t), y)η(t)�

+ yT ∇yV (x)� +
1

a

∑
|p|=3

∇p
y W(x)yp

p!
�

 (4.18)

where ξ is given by (4.15), N and S are defined in (4.7) and (4.8) and �(x, y) is a real eigenstate
of ĥ(2)(x), with eigenvalue E(x) of multiplicity 1.

As before, r̂(x) is the bounded inverse of the restriction of [̂h(2)(x) − E(x)] to the
orthogonal complement of �(x, y) in L2(Rm, dy).

Remark 4.1. The evolution of the dispersion matrices A(t) and B(t) can be read from the
terms of order h̄ in the expansion, and contains explicitly the metric GM :

∂tA(t)il = ηk(t)
[
GM∂jG

−1
M

]
ki
(a(t))A(t)jl + i

[
G−1

M (a(t))B(t)
]
il

(4.19)

∂tB(t)il = i

2
η(t)T

[
GM

(
∂2
ijG

−1
M

)
GM

]
(a(t))η(t)A(t)jl + ∂2

ijE(a(t))A(t)jl

− ηk(t)
[
GM∂iG

−1
M

]
kj

(a(t))B(t)jl (4.20)

Remark 4.2. The term coming from the gauge coupling

iη(t)T N(a(t), y)∇y�

can be written, using creation and destruction operators for the normal oscillations, as

iηjβ
(λ,kλ)(ν,hν)
j yλ,kλ

∂

∂yν,hν

� = i

2
ηjβ

(λ,kλ)(ν,hν)
j

[
ων

ωλ

]1/2

× (
aλ,kλ

aν,hν
− aλ,kλ

a
†
ν,hν

+ a
†
λ,kλ

aν,hν
− a

†
λ,kλ

a
†
ν,hν

)
�. (4.21)

Since β is antisymmetric in (λ, kλ), (ν, hν), the above expression is orthogonal to �, as
we claimed in the introduction to this section.

5. Takens chaos in quantum mechanics

When the constraining potential is not spectrally smooth, that is, roughly speaking, when the
eigenvalues or the eigenfunctions of its Hessian are not smooth, the classical motion on the
submanifold M shows peculiar features.

In this section we consider the quantum analogue of an example given by Takens (1980,
see also Bornemann (1998)) where W fails to constrain spectrally smooth.

The Hamiltonian we study is

Hε = p2
x1

+ p2
x2

2
+

p2
y1

+ p2
y2

2
+

1

2ε2
〈R(x)y, y〉 (5.1)

where q = (x, y) ∈ R
4, 〈·, ·〉 is the standard scalar product in R

2 and R(x) is the Rellich
matrix (Kato 1995 and references therein)

R(x) = 1

4

[
I +

(
x1 x2

x2 −x1

)]
. (5.2)

The eigenvalues of R(x) are

ω±(x)2 = 1
4 (1 ± |x|) (5.3)

with corresponding eigenvectors

v+(x) =
(

cos(φ/2)

sin(φ/2)

)
v−(x) =

(
−sin(φ/2)

cos(φ/2)

)
(5.4)
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where φ = tan−1(x2/x1), and the branch of the inverse tangent is chosen so that −π/2 � φ <

3π/2.
The eigenvectors are discontinuous along the semiaxis {x : x1 = 0, x2 � 0}, or better,

they exchange places upon crossing the cut.

5.1. A brief review of the classical case

To get a confining potential which is bounded from below we restrict the configuration
space to

� := {(x, y) : |x| < 1/2}. (5.5)

With this choice, the Hamiltonian (5.1) constrains the system to the submanifold

M := {(x, y) ∈ � : y = 0}. (5.6)

An (almost) complete description of the limit motions when ε → 0 is given by

Theorem 5.1 (Takens 1980, theorem 3). Let

W(q) = 1
2 〈R(x)y, y〉

then the solutions of the equations of motion

q̈ε(t) = − 1

ε2
∇W(qε(t)) qε(0) = 0 q̇ε(0) → v∗ (5.7)

which satisfy

Qv∗ �= 0 (5.8)

where Q : R
4 → R

2 is the orthogonal projector Q(x, y) = x, converge uniformly to the
unique solution of

ẍ(t) = −∇Uhom(x(t), t) x(0) = 0 ẋ(0) = Qv∗ (5.9)

where

Uhom(x, t) := ϑ+(t)ω+(x) + ϑ−(t)ω−(x). (5.10)

The functions ϑ± are constant for t �= 0 and can have any discontinuity in t = 0 provided that
ϑ+ + ϑ− remains constant.

Remark 5.1. If Qv∗ = 0, the limiting behaviour is not known.

5.2. A quantum analogue

In the quantum case, we consider the Hamiltonian

Ĥ h̄ = −h̄2

2
(�x + �y) +

1

2a2h̄2 〈g(|x|)R(x)y, y〉 (5.11)

where g ∈ C∞
0 (R), g(z) = 1 when |z| < 1/2, g(z) = 0 when |z| > 3/5.

We use the same squeezing factor a for both transversal directions so that the eigenvalues
of R(x) keep their simple form (5.3).

The quadratic form 〈g(|x|)R(x)y, y〉 is non-negative, so Ĥ h̄ is essentially self-adjoint on
C∞

0 (R4).
Scaling y as we did in the above sections, we get

Ĥ BO = −h̄2

2
�x + ĥ(x) ĥ(x) = −1

2
�y +

1

2a2
〈g(|x|)R(x)y, y〉. (5.12)
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Let us suppose from now on that |x| < 1/2, so that g(|x|) = 1 (note that, in theorem 2.1,
it is required that ĥ(x) has an eigenvalue on an open set only, so this restriction is immaterial).

To calculate the spectrum of ĥ(x) we exploit the fact that, for every x,R(x) is a real
symmetric matrix, and can be diagonalized by an orthogonal transformation whose form can
be derived from (5.4), and is given by

Z(x) =
(

cos(φ/2) −sin(φ/2)

sin(φ/2) cos(φ/2)

)
. (5.13)

It shows the same discontinuity of v±, but however is defined for all x.
The corresponding unitary operator

Ẑ(x) : L2
(
R

2
y

) → L2
(
R

2
y

)
[Ẑ(x)ψ](y) = ψ(Z(x)−1y) (5.14)

turns ĥ(x) into the Hamiltonian of two uncoupled harmonic oscillators,

Ẑ(x)† ĥ(x)Ẑ(x) = −1

2
�y +

1

2a2
ω+(x)2y2

1 +
1

2a2
ω−(x)2y2

2 . (5.15)

The eigenvalues of ĥ(x) are then

En+,n−(x) = E0,0(x) +
n+

a
ω+(x) +

n−
a

ω−(x)

E0,0(x) = ω+(x) + ω−(x)

2a
= 1

4a
[(1 + |x|)1/2 + (1 − |x|)1/2].

(5.16)

5.2.1. The ground state. The eigenfunction corresponding to E0,0(x) is

�0,0(x, y) = [Ẑ(x)0,0](x, y) = 0,0(x, Z(x)−1y)

where 0,0 is the eigenfunction of (5.15) with the same eigenvalue.
The result, with a suitable choice of normalization constants, is

�0,0(x, y) =
[
ω+(x)ω−(x)

a2π

]1/4

exp

(
− 1

2a
〈R(x)1/2y, y〉

)
. (5.17)

Equations (5.16) and (5.17) tell us that both the energy and the wavefunction of the ground
state of ĥ(x) are C∞ functions of x for |x| < 1/2. Therefore, theorem 2.1 can also be used in
this case, and gives us a constrained motion in the cylinder {(x, y) : |x| < 1/2, y = 0}, with
effective potential E0,0(x).

The classical trajectory we obtained is the only one which is associated, in the funnel
described by (5.10), with a smooth homogenized potential. The semiclassical limit thus singles
out a specific motion, which is linked to the initial normal oscillation.

5.2.2. The excited states. If we consider the excited states of ĥ(x), we observe crossings
between different eigenvalues in x = 0. Unlike what happens in the classical case, however,
an incoming semiclassical wave packet splits into two components only, giving rise to a
bifurcation of the motion, and not to a funnel.

For the first two excited states, for example, we have

E0,1(x) = E0,0(x) + ω−(x)/a (5.18)

E1,0(x) = E0,0(x) + ω+(x)/a (5.19)

(when |x| < 1/2 we have ω+(x) < 2ω−(x), so the other eigenvalues remain separated from
these).
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The corresponding eigenfunctions are

�0,1(x, y) = a−1/2�0,0(x, y)[2ω−(x)]1/2[−sin(φ/2)y1 + cos(φ/2)y2] (5.20)

�1,0(x, y) = a−1/2�0,0(x, y)[2ω+(x)]1/2[cos(φ/2)y1 + sin(φ/2)y2]. (5.21)

Clearly, the two eigenvalues coincide when x = 0, and are not differentiable at such a
point, while the eigenfunctions are not even continuous.

Carrying out a rotation between �0,1 and �1,0, we can construct a smooth basis in the
two-dimensional subspace generated by them.

It is easily seen that(
�A(x, y)

�B(x, y)

)
:=

(
sin(φ/2) −cos(φ/2)

cos(φ/2) sin(φ/2)

)(
�0,1(x, y)

�1,0(x, y)

)
(5.22)

are smooth in the origin, since [2ω±(x)]1/2 = (1 ± |x|)1/4 = 1 ± 1
4 |x| + O(|x|2), so

�A(x, y) = a−1/2�0,0(x, y)
{−y1 − 1

4y1x1 − 1
4y2x2 + O(|x|2)}

�B(x, y) = a−1/2�0,0(x, y)
{
y2 + 1

4y1x2 − 1
4y2x1 + O(|x|2)}.

Note that

〈�B(x, y), ĥ(x)�A(x, y)〉L2(R2
y )

= a−1 sin(φ/2) cos(φ/2)[ω−(x) − ω+(x)] (5.23)

= a−1
[− 1

4x2 + O(|x|3)] �= 0 ∀ x �= 0. (5.24)

Therefore, in Hagedorn’s classification (Hagedorn 1994), this is a crossing of type I. The
theory developed by him allows us to elaborate on the qualitative features of the propagation
we mentioned above.

If the system is initially in a semiclassical state associated with the level E0,1 and passes
through the region of crossing, x = 0, with a nonzero velocity (this assumption of generic
crossing was already present in Takens’ theorem, (5.8)), the final state is a superposition of
two components, one evolving with the potential E0,1 and the other with the potential E1,0.
More precisely we have

Theorem 5.2 (Hagedorn 1994, theorem 6.3). There is an approximate solution (h̄, x, y, t)

to the Schrödinger equation generated by the Hamiltonian (5.12) that satisfies

(h̄, x, y, t) = �0,1(x, y) exp(iS(0,1);−(t)/h̄)ϕk(A
(0,1);−(t),

×B(0,1);−(t), h̄, a(0,1)(t), η(0,1)(t), x) + O(h̄1/2) (5.25)

for t ∈ [−T , T1], for any T1 > 0. For t ∈ [T1, T ], this solution satisfies

(h̄, x, y, t) = �0,1(x, y) exp(iS(0,1);+(t)/h̄)

×
∑
m

d(0,1)
m ϕm(A(0,1);+(t), B(0,1);+(t), h̄, a(0,1)(t), η(0,1)(t), x)

+ �1,0(x, y) exp(S(1,0),+(t)/h̄)

×
∑

|m|<|k|
d(1,0)

m ϕm(A(1,0);+(t), B(1,0);+(t), h̄, a(1,0)(t), η(1,0)(t), x)

+ O(h̄α/2) (5.26)

for some α > 0.
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Appendix A. Nondegenerate critical submanifolds

Let W : R
n+m → R be a non-negative function, and let M = {q ∈ R

n+m : W(q) = 0} be a
smoothly embedded n-dimensional submanifold such that

• M = {q ∈ R
n+m : DW(q) = 0};

• the Hessian H of W , defined as a field of linear operators H : M → L (Rn+m) by

〈H(q)u, v〉 = D2W(q)(u, v) u, v ∈ R
n+m q ∈ M (A.1)

(〈·, ·〉 is the standard scalar product in R
n+m) is uniformly positive definite when restricted

to TqM
⊥.

Then, M will be called a nondegenerate critical submanifold of R
n+m and W will be called

constraining to M.

Appendix B. Spectrally smooth constraining potentials

Let W be a potential constraining to a nondegenerate critical submanifold M. If the Hessian
H of W has a smooth spectral decomposition on M,

H(q) =
r∑

k=1

ωk(q)2Pk(q) q ∈ M (B.1)

W will be called a spectrally smooth constraining potential. Here, ω2
k and Pk represent the

(nonzero) eigenvalues and eigenprojections of the Hessian.
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